

Senior Design Project Description for FALL 2016 Project Title: Remote Thermographic Applications for Monitoring Thermal Fatigue (EPRI_THERFAT)

Represen	tative:	ASSIC	SNED			
ASSIGNED X TBD (check one)						
Dual Team (check one)						
<u>1</u> E	,1	Cp,	Cv, _	2	_ M,	SE
ber of stu	idents i	equire	d is known))		
rs: (250	per stu	dent)				
	ASSIC _Dual Te 1E lber of stu	ASSIGNED _ Dual Team 1 E, 1 ber of students i	ASSIGNEDX Dual Team (ch 1E,1Cp,	Dual Team (check one) 1 E, 1 Cp, Cv, _ ber of students required is known)	ASSIGNEDX TBD (check on Dual Team (check one)1E,1_ Cp, Cv,2ber of students required is known)	ASSIGNEDX TBD (check one)Dual Team (check one)1E,1Cp, Cv,2M, ber of students required is known)

Description of Project:

This project is an expansion of a project that started in Fall 2015. In this recently-completed project, a method to generate 3D CAD representations of defects observed in piping materials using thermography was developed. Similarly, utilization of low-cost thermal cameras was evaluated for remote applications.

The goal of this project would be to create a program (or piece of software) that can interface with the camera, read the data, and plot the desired thermal data into a graph at a specified, user-defined interval to measure and record thermal cycling in a component.

Initial Project Requirements (e.g. weight, size, etc.):

This project would use the cameras from the initial project. The requirements of this project are:

- Ability to read and plot max and min values from the camera into a .txt or .dat file
- User-selected max and min ranges (i.e. any data to discard) and user-selected recording period
- Ability to select the region(s) of the camera's field of view to include/exclude from the data measurement and recording
- Ability to run multiple cameras simultaneously
- Capability to estimate internal fluid temperatures based on the known parameters (i.e. pipe wall material, thickness, ambient temperature, etc.)

Expected Deliverables/Results:

The deliverable will be an interactive Matlab/Octave algorithm and/or computer program that perform the functions described in the Initial Project Requirements.

List here any specific skills or knowledge needed or suggested (If none please state none):

Matlab/Octave Experience / Mathematical Computation