Senior Design Project Description for FALL 2016 Project Title: Used Fuel Transportation System (AREVA_DFTS)

Supporter: Carrier AREVA			
Supporter Technical Representative: ASSIGNED			
Faculty Mentor: X ASSIGNED TBD (check	one)		
Single Team X Dual Team (check one)			
Personnel (EN/ET): E, Cp, Cv, 3	_ M, _	2	_ SE
(Complete if the number of students required is known)			
Expected person-hours: (250 per student)			

Description of Project:

AREVA has partially developed for the Department of Energy related to the dry transfer of used nuclear fuel (UNF) from a dry storage system to another dry storage system, a transportation cask, and/or a disposal system. The proposed project has to do with detailing a specific element of the Dry Transfer System (DTS), which ideally would be portable to the various storage sites in the U.S.

Initial Project Requirements (e.g. weight, size, etc.):

The project will consist of the following components:

- 1. Design of the ventilation system of the hot cell where the UNF would be handled from one system to another, with key considerations of heat removal from/cooling of the UNF, prevention of air oxidation of the UNF, maintaining sub-atmospheric pressure, and filtration and monitoring of exhaust.
- 2. Design of a storage rack capable of safe temporary storage of various UNF designs (e.g., BWR/6 or PWR-M5 fuel assemblies), with key considerations of heat removal, optimized sizing, minimal space use, seismic stability, and remaining sub-critical (AREVA can take care of this last item).
- 3. Design of the interface between the DTS and the various different systems, with key considerations of adjusting for height and diameter differences of systems, maintaining vacuum seals/interlocks, seismic stability, and allowing remote placement of shield plug into systems.

Expected Deliverables/Results:

A report will be provided to describe the recommended design options.

List here any specific skills or knowledge needed or suggested (If none please state none):

None